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Im reading [Grill]. I want to start with some general remarks on physics. First it is generally
believed that there are only four forces needed to explain the universe, those are gravity, electromag-
netic, the strong and weak forces. Gravity is extremely weak in the context of individual elementary
particles. To a certain extent the theories of Newton deal with the forces of gravity and the theory
of Maxwell deal with electromagnetism. If we assume that these forces dont interact, and we can
calculate the total force on a body by summing them then all we need is a theory that describes the
weak and strong forces. Unfortunatley the predictions of Newton and Maxwell at the microscopic level
need adjustment (QM) and I dont know that there is no interaction.

Griffiths makes a helpful distinction, “Please observe the distinction here between a type of me-
chanics and a particular force law. The force law tells you what F is, in the case at hand; the mechanics
tells you how to use F to determine the motion”. Thus for example Newtons three laws propound to
apply for all forces in the universe, and explain how they interact, while his law of gravitation tells us
how to calculate the exact force due to one interaction. It is interesting to pay attention to what is
implied by the general set up vs what requires the input of the specific force laws.

Using this distinction as well as some other observations I want to clarify what each physical theory
is trying to do, in particular those that are attempting to deal with fundamental particles.

e (lassical Mechanics: The general theory is Newtons three laws, the specific force laws are things
like Newtons law of universal gravitation.

e Electromagnetism: The theory is Maxwells equations the force law is given by
F =q(FE+vxB).
These classical theories fit nicely into Griffiths regime.

e Quantum Mechanics: Quantum mechanics (my understanding of it) does not have any force
laws, it is not a theory of forces. It describes directly how a given state evolves. To some extent
you could say that Schrodinger’s equation is the specific input while the setup with operators
etc is the type of mechanics, but this feels forced.



e Special Relativity: .....
e General Relativity:

e Quantum Field Theory: Quantum field theory per se is the system that determines the mechanics,
whilst it is the standard model that is the specific set of force laws. We will see I guess.

Other areas of physics dont deal with fundamental particles such as statistical mechanics, fluid
dynamics, astrophysics, condensed matter etc. They of course use the information from these funda-
mental theories.

1 Experiments

The first question is what it even means to detect an elementary par-
ticle. You cant see them, you cant feel them. What macro-observable
phenomena implies there existence. Griffiths tells us

As it turns out, almost all of our experimental information
comes from three sources: (I) scattering events. in which
we fire one particle at another and record (for instance)
the angle of deflection; (2) decays, in which a particle
spontaneously disintegrates and we examine the debris;
and (3) bound states. in which two or more particles stick
together and we study the properties of the composite
object.

Needless to say, determining the interaction law from such
indirect evidence is not a trivial task. Ordinarily the pro-
cedure is to guess a form for the interaction and compare
the resulting theoretical predictions with the experimental
data,

Most of the elementary particles we get access to come also in three forms, from cosmic rays, nuclear

reactors and particle accelerators. Protons, neutrons and electrons are easy to get from ordinary

matter by heating up hydrogen or metals. Particle accelerators are the newest tech, initially we

only had cosmic rays. Particle accelerators can collide readily accessible electrons and protons, then

using powerful magnets separate different smaller particles that can be collected and then fired at one

another.

The detectors that then surround these interactions then work on

y Yan the principle “when high-energy charged particles pass through mat-

v — ter they ionize atoms along their path”. The ionized paths are then

detectable (for instance in the oldest methods the ions are created

in a cooled alcohol vapour and act as a catalyst for the vapour to

condensate). Something to note is that “electrically neutral particles do not cause ionization, and

they leave no tracks ... their paths have to be reconstructed by analyzing the tracks of the charged

particles in the picture and invoking conservation of energy and momentum at each vertex”. The

curvature of the paths is directly related to the momentum and sign of the charge of the particles
(electromagnetism), thus the paths tell you the momentum of the particles.

The story of the 20th century then is the story of the discovery of many new little particles. As
more were discovered the theoretical frameworks changed and expanded, predicted new particles that
were subsequently found. The existence of the electron was discoved (first) in 1897, it was done exactly
as described above, someone heated up a metal (a cathode ray) that shot a beam of something, then by
putting it through an electromagnetic field (and varying the field strength) he was able to determine



the charge to mass ratio of the ejected particles. This ratio was very large, indicating large charge or
tiny mass.

All said and done the theory now predicts 62 distinct elementary particles. 6 Leptons, 7 mediators
and 6 (?7) quarks, the quarks have three different colors and then every particle has an anti-particle
dual, thus

2x (64+746x3) =062

The current theory suggests that thre cannot be any more particles under a given mass, and therefore
if there are any more there is a large jump in the masses of the fundamental particles.

2 Lagrangian Field Theories

The formulation of physics that unifies the different paradigms (electromag, classical, QM) is La-
grangian. That is to say it is not immediately clear that there is a uniform language in which to state
say the Maxwell equations and the Schrodinger equation.

For classical mecahincs [LL76] puts it as follows. A physical system is characterised by a function
L(z,2,t) by the requiring the system moves between two points (z1,£1) — (x2,f2) in a way that
extremises the integral, .

2
S = / L(z,z,t)dt
t1

This is equvalent (? certainly it is sufficient) to x(t) satisfying the Euler-Lagrange equations

d oL 0L
dt 65CZ B &r,i

(one equation for each generalised coordinate, for instance one particle in three dimensions requires
three equations).

In a field theory we can do an analogous thing. Let o(z,y, z,t) be a vector field on R* (say), for
instance the magnetic field at a place and time. Because we want to be relativistic now too we will
put space and time on an equal footing and simply denote

xozt, zlzx, :L'zzy, =2z
and we set
o= 2
we = OoxH

Then the Lagrangian (or Lgrangian density) is a function of ¢ and the derivatives 9, ¢, that lands in
R (thus all vector quantities of interest will be resolved into scalars, for instance by taking dot products
etc). Similarly we will then look for paths, that is x#, that minimize the integral over the Lagrangian,
and the Euler-Lagrange equations become

oL oL
00,0 Op

[Sch95l, XTI1.45] has a proper derivation and details for this, including the definition of the functional
derivate. For instance the Dirac Lagrangian for a Spin 1/2 field is

L =iy 9, — T,

where 1) is a ”spinor field” in Griffiths language, which means simply a C? vector field, v* are some
2 x 2 ”Dirac” matricies and we sum over repeated indecies. Notice that all the fields are sent to scalars
by multiplying with their adjoints /7. The Euler lagrange equations then give you some differential
equations on your field, in this case 1 must satisfy (summing over repeated indicies)

Ayt + T =0,



Up to this point, the Lagrangians we have considered might just as well describe classical
fields as quantum ones. The passage from a classical field theory to the corresponding
quantum field theory does not involve modification of the Lagrangian or the field equations,
but rather a reinterpretation of the field variables.

Remark. In a certain sense then QM is already a field theory as the waves functions are naturally
scalar functions, or if we add spin, that is L?(R*) ® C™ then they become C" vector fields. Indeed the
(some cases of the?) Schrodinger equation can be derived from a certain Lagrangian formulation just
as we described for the fields above, this is done in [Sch95| XIII.46] for

We see then that the quantized field theory developed thus far in this section is equivalent
to the Schrédinger equation for several non-interacting particles, provided that only the
symmetric solutions are retained in the latter case. It can be shown that the two theories
are completely equivalent even if interactions between particles are taken into account.

Or indeed [Fol08] and [PS19] perform this process for the Klein-Gordan equations which are just the
relativistic Schrodinger equations.

Remark. What is the relationship between x and ©7 A priori it is nothing. There is a relationship
however between z(t) and Z(t), that is the position alone does nothing to tell you about the velocity,
only the actual trajectory of the particle does that.

In this sense the Lagrangian or the Lagrangian density is a functional in the actual trajectories
of x and &. Also note that the relation between the two is simply that the Lagrangian density is a
function over all space-time while the Lagrangian is just a function of time, after integrating out the
space variables.

Remark. (Gauge Thoery) I really have come to hate this word. Griffiths puts it quite simply
however. Before we quantize we can look at the Lagrangian. We can do one of two things, either
observe an invariance under a substitution (or group action more generally) or we can try to enforce
an invariance. Both can be more or less trivial depending on the situtaion. In practice what happens
seems to be that a Lagrangian (classically) will have a ”global” invariance, for instance

W) = ()1 (e0) = vy

this is global because our group action does not depend on the point x. One could ask what happens
when we let 6 depend on z. Obviously the answer is that it depends on how 6 depends on x, but the
point is that there exist (smooth) functions (z) such that for a Lagrangian globally invariant under
this action it will not be preserved at every point z. This can be manually fixed by basically just
adding in the difference (obviously not always this simple). This idea of making global symetries apply
locally has been fruitful. For instance the Dirac Lagrangian above has a gloabl ¢’ € U(1) symmetry
/ invariance when we force it to also be local the Lagrangian must change to be

DIV — T = Iy — Pl — FRVE,, — TytpA,

again summing over the repeated u,v’s. Here F,,, = 0OMAY — 0" A" (covariant derivative) and A, is
a vector field (we are summing over the components, so the Lagrangian is still a scalar) that transforms
according to the rule
i0
@ A, = A, +08,0(x).

The point of this is that forcing Lagrangian to be locally ” gauge invariant” necessitates the introduction
of new fields, the A,. When we quantize these fields become particles, and so we have predicted that
if the mechanics is locally gauge invariant then some particle must exist.

This was a U(1) action on the Lagrangian (or some vector space that contains it, say C[L]). Yang-
Mills theory produced from a global SU(2) invariant Lagrangian, for two spin half particles, and did



the same process as above producing a locally invariant Lagrangian. The difficulty was dealing with
the fact that SU(2) was not abelian. Griffiths says that ”the hard work is over: extending non-Abelian
gauge theory to higher symmetry groups is a straightforward procedure, once the Yang-Mills model is
on the table”.

Remark. (Non-flat case) I guess merging QFT and GR is still an open problem, but one can see
already that a lot of this was built on the idea of manifold theory already, or at least has a natural
generalisation to it. We still have integrals vector fields, derivatives, covariant derivatives and even
local group representations (principle bundles).

Remark. III just slap here that QCD is quantum chromo dynamics and QED is quantum electro
dynamics. Because this theory deals with multiple forces (strong, weak, electromag) there are sort of
sub theories that deal with just one (or two) that were developed more or less completely before the
others. Namely QED was first worked out because QCD needed Yang-Mills theory first to make it
work. These are all of the same form and indeed merge into the standard model.

3 Quantisation

Next we need to know how to quantise a field theoretic Lagrangian. There are multiple ways apparently,
we will see how far we get, as this is not in Griffiths we will be consulting [PS19], [Ryd92] and [Fol08].
The processes in the physics texts are borderline incoherent, so Im drawing mostly from Folland.
Folland claims that it makes sense for free fields and that fields with interactions are essentially not
yet understood how to make what the physicists want to happen happen (it will be clearer later, but
essentially the physicists say let blah be a thing such that bleh, and the point is that it is either known
that no such blah exists or it is not known that one exists).

3.1 Axiomatic Answer

Berfore reading the exposition in Folland I found the physics answer essentially inpenetrable. So

I will present this in the way that made it make sense to me. Following [Fol08, 5.5] "In the late

1950s Wightman and Garding formulated a list of basic properties that any physically reasonable and

mathematically well defined quantum field theory should have”. I will be ignoring gratuitous details.
First the theory consits of a few objects:

e a Hilbert space .7,

e a collection, @1, ..., 0N, of .F operator valued distributions on R* (recall a distribution is in the
functional analysis sense a map from S(R*), the Schwartz functions on R*, to in this case the
set of operators),

e a unitary representation of R* x SLy(C) on .# (this group is the universal cover of the set of
Minkovski space time isometries),

e a representation of SLy(C) on CV.

The ¢;’s are our quantum fields on space time and the represenations capture the symmetries of space
time. In the physics literature they dont care about distributions, thus we are supposed to really think
of the quantum fields as just operator valued fields on R*, but mathematically we require distributions
to make this work. We moreover require that the setup has some properties

e A bunch of technical things dealing with the fact that operators are only defined on dense subsets
and we want them to be nice, even though they are unbounded.



There should exist a ”vacumme state” that is some element Q € % that is stable under the
unitary action on this Hilbert space (its stabiliser is the whole group) and moreover this state
should be unique up to multiplication by €.

The fields operators acting on the vacumme state should give a Hilbert space basis of .#

The fields operators should intertwine with the unitary operators of the representation on %

(Under some assumptions on the light cone points etc) the operators ¢;(f), ¢;(g) should either
commute or anticommute, as well as ¢;(f) with cpj- (9)-

”The bad news is that it has turned out to be a remarkably difficult task to construct examples of
field theories that satisfy the Wightman axioms and have nontrivial interactions. Attempts to produce
such examples in physical space-time R4 have yet to succeed”. But at least we have a typing that
makes sense for the free fields and a clear goal for what we want the whole thing to look like, even if
it requires some technical generalisations.

Remark. This does nothing to tell us how to quantise a field, however it does tell us what that even
means, that is it tells us what we want the output of our quantising process to be.

3.2 Physics Answer

So with that in mind lets go through what say [PS19] says about quantising the Klein-Gordan field
(the presentation in [Ryd92] is very similar). Classically you start with a single scalar field ¢ and a
Lagrangian density

L= (0up)* — ¢*

Then "To quantize the theory, we follow the same procedure as for any other dynamical system:
We promote ¢ and 7 to operators, and impose suitable commutation relations”. Looking at the
commutation relations in more classical theories and "replacing kronecker deltas with dirac deltas”
results in imposing the following commutation relations on the ”promoted” operators

[p(z), m(2)] = id(z = y),

and also that ¢ and 7 commute with themselves (at all points). This makes it clear that really when
they say promote to an operator they mean a field of operators, while on the right hand side we dont
have an operator so they are implicitly multiplying by the identity operator. Notice that they havent
told us anything about what the ”promoted” things actually are they just sort of say let there be two
operators that commute in this way.

The next step is to try and expand the ansatzed fields in terms of Fourier series ”In analogy with
(quantum case) we write”

o) = [ (@ +al ), nla) = [ (-l e

This step is the step that is supposed to relate it to the original ¢, the reason is that their logic is
that in QM if they replaced ¢ and 7 with the harmonic oscillator then they would be written basically
as the integrands of the integrals above, but then they want to do this everywhere so they take an
integral over all space.

3.3 Another Answer

Folland again comes to the rescue with a tidied up version of what they were trying to say above.
Following [Fol08| 5] again we will deal with the Klein-Gordan equation. So consider a scalar field ¢ on



(a box in) R?*, then the Laplacian has an orthonormal basis of eigen functions {f;} (discrete spectrum
if we restrict to a box). Expand the field in this basis

ot ) = q;(t)f;(x)

for some real valued functions ¢; then Folland claims that "¢ satisfies the Klein-Gordan equation iff
its expansion satisfies”
qj (1) +wig; =0, wj =X +1

for some w; and where \; are the eigenvalues for eigen function f;. These are apparently the the equa-
tion for a classical Harmonic oscillator. Recall from QM that the Hamiltonian for K one dimensional

oscillators can be written as )
_ T
H = ij <AjAj — 2)

or by adding on a constant (which preserves the solutions / dynamics) simply

H = ZWJ'A]‘A}

This aviods convergence issues latter. Now the key point is that because we have a field we cant consider
individual particles yet and we therefore consider an infinite number of oscillators. For infinitely many
particles we then need to ask what are these operators even acting on. The answer is the Fock space,
which is just the complete (in a metric sense) symmetric tensor algebra over some hilbert space, in this
case the relevant Hilbert space is some infinite dimensional seperable one (theyre all iso), we denote
this space .%. Finally the position operator in QM has a relation to these A operators, so called ladder

operators, given by

1
X, =4+ )

W

We then construct the quantum field associated to ¢ as

®(z) =y fi(@)X;

The time dependence can be restored by moving from the Schrodinger picture to the Heisenberg
picture. Notice that what we have now is a field of operators. The problem is that this series almost
never converges, Folland calculates its norm on the vacumme state and its is infinite. To fix this you
introduce the distributional picture.

We started from the idea of a classical field, that is, a function ¢ on (some region in)
space-time whose value at a point x is an observable quantity — say, a force, a velocity,
a temperature — that can be determined by measurements performed at x. One would
expect quantization to yield a function ® on space-time whose value at x is the quantum
observable — i.e., self-adjoint operator — corresponding to the classical observable. What
we seem to have ended up with, however, is rather different. The values of the quantum
fields we have constructed are self-adjoint (or, more loosely, Hermitian) only when the
quanta of the field are their own antiparticles; in other cases the values of the fields cannot
directly represent observable quantities.

Remark. Notice that the quantised field has nothing to do with the original field, it is the Lagrangian
itself that we are quantising, or rather the soltions to that Lagrangian. Thus the ® we wrote down
does not use the g; coefficients from the original field in any way. The fields happen to have relations
in some limits but this is not by virtue of the construction but rather because they both satisfy the
DE.



Remark. This is not a repeatable process for other situations a priori (its not a posteriori either).
Each classical situation seems to be quantised in some what ad hoc ways. The axiomatics makes it at
least clear what they are aiming at. Im not an expert maybe there is a more formulaic way of doing
this, but none of the presentations referenced seem to give it. [Ryd92] gives the closest thing by noting
that the different fields are in two groups and the Dirac field is a paradigm of one case and the QED
field is the paradigm of the other. I guess if I really wanted to understand this whole thing the QED
quantisation (representing gauge theories more generally) would be the place to go.

4 Dyson Series

This is the last peice of the puzzle that describes a correspondence between the quantized Lagrangian
and the Feynman diagrams. Im tired of this so Ill be brief. Consider a quantum system with a
Hamiltonian of the form

H=Hy+ Hy

where we understand Hy and want to understand what the other term produces. Then we can define
V() = exp(it(Ho — H))

which it is equivalent to understand. The Dyson series for V(¢) is then some formal non-sense that
expresses V(t) =1+ V,(t) where

vy =g [ [T [ it mGar

In scattering problems the quantity of interest is the ”scattering operator” or the S-matrix. This can
be defined as S = V(+00), that is substitute the terminals in all the integrals of V'(¢) to be over all
of time. If any of these series converge etc then in principle this integral should return an operator
and the thing of interest is how this operator acts on a basis say of our Fock space. The point is that
there is something to calculate here. Now one last thing is that it turns out the the integrands can
be written as a product of a series of ”contractions” of other operators, this is more or less just a
canonical way of arranging the operators in a nice way. The point of this is that these contractions
are how we construct Feynman diagrams from a Dyson series, roughly the rules are

e For each operator create a vertex
e For each contraction draw a line between the two verticies

e The line direction is determined by the relation between the creation and anihilation operators

5 Feynman Calculus

This is the thing that is actually practically useful so I will be terse. In an experimental context the
two things that are of interest are particle decay rates and scattering. For decay rates we care about
”the probability per unit time that a particle of a given type will decay”, I', because particles are all
identical this cannot depend on the past of the particle. The decay rate is then the probability for
a Poisson process, and we can use that theory to get that the mean lifetime is just the reciprocal of
I'. On the other hand for scattering interactions the relevant quantity is the cross sectional area of
the particle (essentially the likely hood of a something else hitting this particle in a bounded region).
Because particles will deflect in a smooth region of a particle even defining a cross section, o, is sticky,
it will depend on the type of the two interacting particles, their velocities, charge etc. The precise
definition is basically empirical then, being modelled on how we expect the particles to interact in a
high energy collision (elastically etc).



These two quantities are related to the so called ”amplitude” or "matrix element”, .#. Once
we have this the theory of QFT produces formulas relating .# to decay rates and cross sections of
particles, in the form of ”The Golden rule” (im simplifying it because I dont care about the details),
let a particle 1 decay into 2, 3,4, ...,n with respective momenta given by p; then

n

= / | (D1, ) [P6(p1 = p2 = -~ = pn) ¥ [[6(0F = mic)xpoz0  d'p
=2

The deltas and chi’s should be read as restricting the integral to the regions of the domain where those
criteria are satisfied, as they are just "zero everywhere else” and then when the condition is satisfied
can be ignored ”because they integrate to one” (all delta functions are centered at zero in Griffiths). In
particular the deltas in the product are acting on the differential itself (this leads to Griffiths equation
6.21). The golden rule for scattering varies only slightly

n

1
SRV Ry e /\///(plmpn)l%(pl +p2 == pa) x [T 607 —mic*)xp0s0 'y
1° P2 - 17762

=3

The rest of the game then is determining .# for the specific physical interaction. Griffiths gives
a 6 step process for converting a Feynman diagram into an amplitude. The rules are something like
assign to edges certain functions of mass and momentum, assign to each verted a delta function of
some form and finally integrate over these functions to produce .#. It is this integral that has the
divergence problems. The process of "renormalizing” seems to be a quasi-systematic way of ignoring
this fact. Its probably given in a little more detail in the section 7 examples if I care. Then for a
given interaction there will be some number of Feynman diagrams (Not explained) and we take the
sum of their amplitudes as the final amplitude in our golden rule.

Feynman Amplitudes
Physical r? Diagrams
Situation )‘L Decay rate or
.
/ > ,\J-< ? ' cross section
==L — H —
£ — 2=l —— M, ar
0 h sum golden rule

(~]

\
o< — M 3
Algorithm

possible renormalization
issues

Remark. In his golden rule Griffiths uses §*(pi — ...), this is because the p; are 4-vectors and they
need to denote this. One can consider the delta function as a product of the delta functions on each
components.

Remark. There are lots of other things in this world to see I guess, but I think that’s the gist.
Something that vaguely interests me is so called ”path integral formulation”.



References

[Fol08] Gerald B. Folland. Quantum field theory: a tourist guide for mathematicians. Number volume
149 in Mathematical Surveys and Monographs. American mathematical society, Providence,
RI, 2008.

[Grill] David J. Griffiths. Introduction to elementary particles. Physics textbook. Wiley-VCH, Wein-
heim, 2., rev. ed., 5. reprint edition, 2011.

[LL76] Lev Davidovi¢ Landau and Evgenii Mikhailovich Lifshits. Mechanics. Number v. 1 in Course
of theoretical physics. Pergamon Press, Oxford New York, 3d ed edition, 1976.

[PS19] Michael Edward Peskin and Daniel V. Schroeder. An introduction to quantum field theory.
The advanced book program. CRC Press, Taylor & Francis Group, Boca Raton London New
York, 2019.

[Ryd92] Lewis H. Ryder. Quantum field theory. Cambridge university press, Cambridge, 1992.
[Sch95] Leonard Schiff. Quantum Mechanics. McGraw-Hill Professional, New York, 1995.

10



	Experiments
	Lagrangian Field Theories
	Quantisation
	Axiomatic Answer
	Physics Answer
	Another Answer

	Dyson Series
	Feynman Calculus

